Circular CA-OL: Calculating G-Gradients for 2300AD

G-gradient values can be derived from Newton's Law of Gravitation, equation (1)

Equation (1) $g = \frac{GM}{r^2}$

...where

g = standard gravity of 9.80665 m s⁻² G = Gravitation Constant of $6.67428 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ M = Mass, kg r = radius, m

We are interested in the distance (radius) from the body's core at which a particular g-gradient occurs. Thus, equation (1) can be re-written in terms of r, as expressed in equation (2).

Equation (2) $r = \left(\frac{GM}{g}\right)^{\frac{1}{2}}$

Equation (2) will provide the distance (radius) at which the g-gradient is 1.0. However, the two g-gradients of interest in *2300AD* are the 0.0001 and 0.1 ones. Let us modify equation (2) to reflect these gravity levels, as shown in equation (3) and (4).

Equation (3)
$$r_{0.0001grad} = \left(\frac{GM}{0.0001g}\right)^{\frac{1}{2}}$$

Equation (4) $r_{0.1grad} = \left(\frac{GM}{0.1g}\right)^{\frac{1}{2}}$

For planetary bodies, it is convenient to express mass as a value of the mass of the Earth, where Earth's mass is 5.9742×10^{24} kg.

Let's simplify equation (3), as shown in equations (5.1) and (5.2)

Equation (5.1)
$$r_{0.0001grad} = \left(\frac{\frac{6.67428 \times 10^{-11} m^3}{kg s^2} \times 5.9742 \times 10^{24} kg M}{\frac{9.80665 m}{s^2} \times 0.0001}\right)^{\frac{1}{2}}$$

Equation (5.2) $r_{0.0001grad} = 6.37649 \times 10^9 m M^{\frac{1}{2}}$

The distance in equation (5.2) can be expressed in kilometers, as shown in equation (6), or astronomic units (au) in equations (7.1) and (7.2), where there is 149.5×10^6 km in an au.

Equation (6) $r_{0.0001grad} = 6.377 \times 10^6 \, km M^{\frac{1}{2}}$

Equation (7.1)
$$r_{0.0001grad} = \left(6.37649 \times 10^6 \, km \, M^{\frac{1}{2}}\right) \times \left(\frac{1 \, au}{149.5 \times 10^6 \, km}\right)$$

Equation (7.2) $r_{0.0001grad} = 4.265 \times 10^{-2} au M^{\frac{1}{2}}$

Equation (4) can be treated in a similar manner as equation (3) to yield equations (8.1), (8.2) and (8.3).

Equation (8.1)
$$r_{0.1grad} = \left(\frac{\frac{6.67428 \times 10^{-11} m^3}{kg s^2} \times 5.9742 \times 10^{24} kg M}{\frac{9.80665 m}{s^2} \times 0.1}\right)^{\frac{1}{2}} \times \frac{1 km}{1000 m}$$

Equation (8.2) $r_{0.1grad} = 2.016 \times 10^4 \, km M^{\frac{1}{2}}$

Equation (8.3) $r_{0.1grad} = 1.349 \times 10^{-4} au M^{\frac{1}{2}}$

Derivation by Terry Kuchta, O3 January 2009.

If we look at stars, it becomes more practical to express mass in terms of the mass of our sun, Sol, which is 1.98892×10^{30} kg. It is also more useful to express distance in au.

Equation (3) can then be re-written as equations (9.1) and (9.2).

Equation (9.1)
$$r_{0.0001grad} = \left(\frac{\frac{6.67428 \times 10^{-11} m^3}{kg s^2} \times 1.98892 \times 10^{30} kg M}{\frac{9.80665 m}{s^2} \times 0.0001}\right)^{\frac{1}{2}} \times \frac{1 au}{149.5 \times 10^9 m}$$

Equation (9.2) $r_{0.0001grad} = 2.4610 au M^{\frac{1}{2}}$

Equation (4) can be re-written as equations (10.1) and (10.2).

Equation (10.1)
$$r_{0.1grad} = \left(\frac{\frac{6.67428 \times 10^{-11} m^3}{kg s^2} \times 1.98892 \times 10^{30} kg M}{\frac{9.80665 m}{s^2} \times 0.1}\right)^{\frac{1}{2}} \times \frac{1 au}{149.5 \times 10^9 m}$$

Equation (10.2) $r_{0.1grad} = 0.0778 au M^{\frac{1}{2}}$